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If  experimental  comparisons  are  to be  made  between  time-  and  fi-equency-domain measurements of 
polarization  mode  dispersion  PMD,  they  must be done  with  a  good  understanding of the systematic 
and  random  uncertainties  present.  In this paper,  I  quantify  sources of systematic  uncertainties in time 
domain PMD  measurements  and  demonstrate correction techniques on experimental  data. 

Until recently, theoretical  and  experimental  work [ 1 - 101 claimed to support an equality between 
PMD  measured in the  time  domain as the  square  root  of the second  moment CT of the autocorrelation 
function  and  PMD  measured in the frequency domain as the RMS differential group delay (DGD), 
so that RMS DGD/a = 1.  However, the recent  theory of Heffner [l  11 shows the issue to be more 
complicated,  with RMS DGD/o depending  on the spectral shape of the time domain measurement 
source  and  only for large  values  of PMD-bandwidth product  does the ratio demonstrate a constant 
value 0.866 which  disagrees  with  previous  theory by about 13%.  Most of the referenced attempts 
to measure the FUvfS DGD/a ratio  lacked the precision to see a 13% effect. Furthermore, standard 
second  moment  evaluations  of  time-domain  PMD have several sources of systematic uncertainties 
large enough to nullify comparison efforts. These systematic errors were  avoided by one recent 
experimental work  [12]  which  used  a curve-fitting method  to measure CT giving  a value of RMS 
DGD/a close to 0.9. However,  curve-fitting is not  always considered to  be rigorous enough. So, I 
present  corrections  here  which  allow  significant reductions of the systematic biases of  the standard 
second moment calculation. 

Measurements of  PMD in highly  polarization-mode-coupled  optical fibers using an interferometric 
or equivalently wavelength  scanning  with  Fourier  transform (WSFT) technique produce an 
autocorrelation  function  illustrated by the one-sided  example  of  Figure  1. This time domain response 
is a  quasi-random  amplitude  (due  to  random phasing) under  a Gaussian envelope. The  PMD  of the 
fiber can be measured by finding the square 
root of the second  moment of this curve 
[13,141 
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integration, data clipping  and  central  peak 
removal  are  encountered  and  must  be Figure 1 Typical  Fourier-transformed 
corrected. wavelength scanning data. 
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A good approximation to Equation (1) is obtained using the trapezoidal integral approximation 

b 1 1 x I ( t k )  t; -- I(ta) tal - -I(t,) tb’ 
k = a  2 2 
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where t, and t, are the time coordinates of the first and last points used. A simpler rectangular 
approximation is sometimes  used [13,14].  However, the numerical  integration is usually carried out 
with the time coordinate sampled at the practical values t = 0, A, 2A ,... for example, as opposed to 
the  more appropriate t = A/2,  3A/2, 5A/2,... values (A is the sampling step size). It should be 
cautioned that for a single-sided data set as from WSFT, integrating from ta=O will underestimate 
0 by an amount dependent on the time domain sampling density q (number of data samples / a). 
Under practical conditions, this can result in errors of several percent and the trapezoidal 
approximation represents a significant improvement (Figure 2). 

Another systematic bias comes from limited 
range. The sampling range tb can be limited by 
the wavelength resolution in WSFT 
measurements or the scan range of the 
interferometer. But, the first limit to be 
encountered is likely to be due to the signal to 
noise ratio of the system. Generally, the useable 
portion of the data is determined by  some 
criteria such as the exclusion  of data beyond the 
point tb  where the signal  drops  below 2 times the 
rms noise level [ 13,141. However, clipping the 
data wing(s) in this way systematically biases 
the measured a toward lower values. This can 
be seen from Equation (1) in that for a nominal 
gaussian, at large values of  t, the positive 
integrand of the denominator I(t) approaches 
zero  more  quickly  than  the  positive  integrand of 
the numerator I(t)t’. So, the result of excluding 
data at large values o f t  will be to bias (3 toward 
smaller values. Figure 3 shows a computer 
simulated result of measurement error as a 
function of the data clipping point tb/u (solid 
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Figure 2 Measurement errors for trapezoidal 
(dashed) and rectangular (solid) integral 
approximations as a function of sampling density 
(the number of sampled pointdo) q. 

curve) with a being the true value of the square root of the second  moment. The clipping error is 
substantial. Indeed,  an RMS noise  level  of 6 or 7% would  require  clipping  at tdo = 2 giving an error 
on  the order of 10% - large enough to bias measurements of RMS DGD/a from 0.866 up to 1 .O. 
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To correct for this error, a  simple  look-up table 
is useful. The dashed  curve  of  Figure 3 is the 
solid curve plotted as a  function  of tb/aM where 
oM is the measured  value  of  second  moment. In 
practice, dividing CJ, by the  value of the  dashed 
correction curve at tb/aM removes the clipping 
error. Of course, the correction  has  trouble  for 
values of which  are  much  less  than 2 where 
the curve  becomes  very steep and  small random 
errors in measuring CJ, are amplified by the 
correction factor. An example of the correction 
performance is shown in Figure 4 where CJ is 
measured on simulated  WSFT data (using the 
simulation of Reference 1 1) at  various clipping 
levels  and  then  compensated  to  give  a  corrected 
value.  Clearly, the compensated CJ performs  well, 
within 2% of its unclipped  value down to about 
the t&M = 2 level. 

Another source of systematic  error comes from 
removing the central  peak fiom the time domain 
response. In autocorrelation  interferometers, the 
interferogram  has  a large source  autocorrelation 
peak around t =O which  contains no PMD 
information. A similar  peak  results from 
windowing  in WSFT. In practice, CJ is often 
calculated by  simply  adjusting t, in Equation 2 to 
skip the data points under the central  peak. 
However, the result is a systematic increase in 
measured CJ. The reason  can  be  seen in Equation 
2, where  eliminating low t  values of I(t) reduces 
the value of the denominator  more  drastically 
than does eliminating low t  values of I(t)t2 fiom 
the numerator. The  simplest technique to 
compensate this error is to substitute the values 
of I(t) where the central  peak  occurs with 
estimates of what  I(t)  would  be  without the 
central  peak. As an example,  this  is  illustrated for 
single-sided WSFT data (the procedure is 
identical for interferometric  data). First, CJ, is 
measured  using  Equation (2) with t, set to  ignore 
values  of  I(t)  which  are  dominated by the central 
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Figure 3 Data  clipping  error  vs.  sampled fraction 
of true  second  moment  (solid) or measured  second 
moment (dashed). 
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Figure 4 Normalized  simulated  measurements of 
uncorrected  (solid)  and  corrected  (dashed)  second 
moment vs.  sampled fraction of second  moment. 

peak..  Then CJ, is  used  to  define new integration  limits t, = uM/2 and tb = a,. Then C J ~ . ~ - ,  is measured 
using  Equation (2) with  these new limits  and  divided by 0.75 (the  value of C J ~ . ~ - ~  for an ideal  Gaussian 
of unit amplitude). The result of this division is an estimate at the amplitude A of the Gaussian 
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function describing  the  time-domain response 

- t 2  

2 o2 
I(t)  = A  exp (-). (31 

Then, 0, and A are  used  along with Equation 
(3) to generate estimated values of I(t < t, ). 
Finally, (J is recalculated using equation (2) 
with t,=O. An example of the error and 
correction results is shown in figure 5 for 
computer simulated interferometric data. 

It is worth mentioning that there is one 
systematic error in time domain 
measurements  which is well known but often 
inappropriately corrected for. I refer to the 
source width subtraction technique 

2 -  2 2 
'True -  em - 'Source .  (4) 

The idea is to subtract the square root of 
second moment of the Fourier transform of 
the optical source spectrum oSource from the 
measured square root  of the second  moment  of 
the interferogram oMea to  yield the true square 
root of  the second moment of the spectral 
response of the device under test oTme. This 
technique comes from the fact that a function 
which  is the product of two other functions 
has a variance of its Fourier transform which 
is equal  to the sum of the variances of the 
Fourier transforms of the other two functions. 
However, application of Equation (4) to a 
WSFT  or interferometric PMD measurement 
is inappropriate since is measured after 
the  time domain response has undergone a 
non-linear  enveloping  technique.  Specifically, 
this involves using the envelope of the 
photocurrent in the interferometric case or 
using the magnitude of the Fourier transform 
in the WSFT case. Both of these enveloping 
functions are non-linear modifications to the 
process which make Equation (4) non- 
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Figure 5 Normalized simulated measurements of 
uncorrected  (solid)  and  corrected  (dashed) second 
moment  vs. starting measurement time/measured 
second moment. 
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Figure 6 Ratio of frequency- and time-domain 
PMD measurements as a function of PMD. 

applicable. So, while a finite  source  width  still  contributes a systematic  bias to the measured second 
moment, there is not  yet a rigorous method of correcting the error. 
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In order to demonstrate the usefulness of the above  corrections, the value of RMS DGD/a  is 
calculated using the data  set  from  reference [ 121. The data represents  measurements of seven 
different  fiber  specimens  using.both  Jones  matrix  eigenanalysis  and WSFT techniques. (J is  extracted 
from the WSFT data  using  Equation  2  with  no  correction  factors.  Then,  the  same (J is  corrected  using 
the  above  techniques.  Finally,  a  third  set of second  moment  values  are  obtained by performing  a  non- 
linear least squares fit of Equation 3 to the data sets. This curve-fit technique is not as susceptible 
to  the  systematic errors described  above  and acts as an estimate of the true value of IS. In Figure 6 ,  
the ratio of the frequency domain measurement of PMD (RMS DGD) and the associated time 
domain measurement (J are plotted as a function of the PMD of the fiber (RMS DGD). The upper 
dashed line indicates the previously  predicted  1 .O ratio and the lower dashed line illustrates the 
asymptotic 0.866 value  predicted  by  Heffner.  The  large  data points represent the average of several 
statistically  independent  measurements.  The  small  diamonds  are  the  unaveraged  uncorrected second 
moment measurements  to  illustrate  the  spread in data  and  the  number of  measurements.  Clearly, the 
uncorrected second moment data yields values with a systematic bias of -5% above the curve fit 
results. Application of the correction  techniques  to the data brings the second moment values into 
good  agreement  with  the  curve  fit  results as expected. Clearly, the corrected  results indicate a ratio 
which is closer to 0.866 than  to 1.0. However,  a  larger population of measurements is needed to 
make a quantitative judgement. 

My thanks go  to B.Hefier  for providing some of the  simulated  data  used in this work  and for 
sharing with  me  some  insight  into  the  world of PMD. 
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